LLM Configuration 🤖¶
To configure the LLMs for generating datasets, you need to create an LLMConfig
object. This object contains the configuration for the LLM model, including the model name, temperature, top_p, and max_tokens.
Example 📖¶
from synthgenai import LLMConfig
# Creating the LLMConfig
llm_config = LLMConfig(
model="model_provider/model_name", # Check LiteLLM docs for more info
temperature=0.5,
top_p=0.9,
max_tokens=2048,
api_base="https://api.example.com",
api_key="your_api_key"
)
Parameters 🎛¶
model
(str): The name of the model to use. This should be in the formatmodel_provider/model_name
. (Required)temperature
(float): The temperature to use for the model. This controls the randomness of the generated text. Must be between 0.0 and 1.0. (Optional, default: None)top_p
(float): The top_p value to use for the model. This controls the nucleus sampling. Must be between 0.0 and 1.0. (Optional, default: None)max_tokens
(int): The maximum number of tokens to generate. Must be greater than 1000. (Optional, default: None)api_base
(AnyUrl): The API base URL for the LLM service. (Optional, default: None)api_key
(str): The API key for authenticating with the LLM service. (Optional, default: None)
For more information on the available models and their configurations, refer to the LiteLLM documentation.